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Outline

What Shelah actually proved: Suppose X is a path-connected,
locally path-connected compact metric space. If X is semi-locally
simply connected, then π1(X) is finitely generated; if not, then
roughly speaking π1(X) contains a perfect set.

The first part is purely topological. The second part follows from:

Proposition

Suppose E is an analytic equivalence relation on 2N s.t. ¬c1Ec2
whenever they differ by exactly one digit. Then there is a perfect
set of non-equivalent elements.

Shelah[1] originally proved this by forcing and absoluteness
argument. Pawlikowski[2] gave an easier proof using elementary
descriptive set theory.
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Definition 1

A topological space X is path-connected if for every two points
x, y, there exists f : [0, 1]→ X s.t. f(0) = x and f(1) = y. It is
called locally path-connected if path-connected open sets form a
basis.

Definition 2

Fix a base point x ∈ X. A loop is an f : [0, 1]→ X s.t.
f(0) = f(1) = x. Two loops f, g are homotopic if there exists
H : [0, 1]× [0, 1]→ X s.t. H(s, 0) = f(s), H(s, 1) = g(s), and
H(0, t) = H(1, t) = x for all t ∈ [0, 1]. This is an equivalence
relation on loops at x, and the equivalence class of f is denoted
[f ]. π1(X) is the collection of all equivalence classes.
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When X is path-connected, π1(X) does not depend on the base
point x.

π1(X) can be given a group structure by defining the product f · g
of two loops at x as

f · g(s) =

{
f(2s), 0 ≤ s ≤ 1/2

g(2s− 1), 1/2 ≤ s ≤ 1

and then define [f ] · [g] := [f · g]. The identity element is the
equivalence class of the constant map f(s) = x, and the inverse of
[f ] is represented by f̄(s) = f(1− s).

A continuous map Φ : X → Y induces a group homomorphism
Φ∗ : π1(X)→ π1(Y ), [f ] 7→ [Φ ◦ f ].

6 / 20



When X is path-connected, π1(X) does not depend on the base
point x.

π1(X) can be given a group structure by defining the product f · g
of two loops at x as

f · g(s) =

{
f(2s), 0 ≤ s ≤ 1/2

g(2s− 1), 1/2 ≤ s ≤ 1

and then define [f ] · [g] := [f · g]. The identity element is the
equivalence class of the constant map f(s) = x, and the inverse of
[f ] is represented by f̄(s) = f(1− s).

A continuous map Φ : X → Y induces a group homomorphism
Φ∗ : π1(X)→ π1(Y ), [f ] 7→ [Φ ◦ f ].

6 / 20



When X is path-connected, π1(X) does not depend on the base
point x.

π1(X) can be given a group structure by defining the product f · g
of two loops at x as

f · g(s) =

{
f(2s), 0 ≤ s ≤ 1/2

g(2s− 1), 1/2 ≤ s ≤ 1

and then define [f ] · [g] := [f · g]. The identity element is the
equivalence class of the constant map f(s) = x, and the inverse of
[f ] is represented by f̄(s) = f(1− s).

A continuous map Φ : X → Y induces a group homomorphism
Φ∗ : π1(X)→ π1(Y ), [f ] 7→ [Φ ◦ f ].

6 / 20



When X is path-connected, π1(X) does not depend on the base
point x.

π1(X) can be given a group structure by defining the product f · g
of two loops at x as

f · g(s) =

{
f(2s), 0 ≤ s ≤ 1/2

g(2s− 1), 1/2 ≤ s ≤ 1

and then define [f ] · [g] := [f · g]. The identity element is the
equivalence class of the constant map f(s) = x, and the inverse of
[f ] is represented by f̄(s) = f(1− s).

A continuous map Φ : X → Y induces a group homomorphism
Φ∗ : π1(X)→ π1(Y ), [f ] 7→ [Φ ◦ f ].

6 / 20



7 / 20



8 / 20



Associativity: f · (g · h) 6= (f · g) · h, but they are homotopic.
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Examples

π1(Rn) = e, π1(S) = Z, π1(S ∨ S) = Z ∗ Z.

Similarly π1(
∨
α∈I Sα) is the free group on |I| many generators.

Attaching 2-cells to
∨
α∈I Sα can

create any desired fundamental
group, the resulting CW complex
is often not metrizable.
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Definition 3

X is called simply connected if π1(X) is trivial. X is semi-locally
simply connected if each point has a neighborhood U s.t.
i∗ : π1(U)→ π1(X) is trivial, i.e., any loop in U can be
homotoped to the constant map in X. Note that if V ⊆ U then
i∗ : π1(V )→ π1(X) is also trivial.

Let fn : [0, 1]→ X, then f is the limit of

f1, f1 · f2, f1 · (f2 · f3), f1 · (f2 · (f3 · f4))...

We may call it f1f2f3f4 · · · Its inverse is · · · f̄4f̄3f̄2f̄1.
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π1(X) is very complicated. For example an f : [0, 1]→ X can
traverse Cn during [1− 1

2n , 1−
1

2n+1 ]. It is continuous at 1 since
the circles are shrinking.
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Proof of first part

Suppose X is a path-connected, locally path-connected and slsc
compact metric space. We want to show that π1(X) is finitely
generated.

Each point x has a path-connected open neighborhood Ux s.t.
π1(Ux)→ π1(X) is trivial. By compactness we can find a finite
cover π1(Ui)→ π1(X). If moreover π1(Ui ∪Uj)→ π1(X) is trivial
for any pair Ui ∩ Uj 6= ∅, then we are done: pick xi ∈ Ui and for
any Ui ∩ Uj 6= ∅ a path in Ui ∪ Uj connecting xi and xj , then
π1(X) is generated by the loops formed using these paths.

Recall Lebesgue’s number lemma: If (X, d) is compact and O is an
open cover, there exists δ > 0 s.t. any subset of diameter at most
δ is contained in some element of O.

Pick another cover consisting of path-connected open sets of
diameter at most δ/2, and apply the argument to this cover.
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Proof of second part

X is slsc⇔ ∀x ∃U 3 x ∀f ⊆ U becomes trivial when viewed in X.

X not slsc⇔ ∃x ∀U 3 x ∃f ⊆ U that is nontrivial in X.

Let Un be the ball at x with radius 1/n and fn a loop at x that is
contained in Un and nontrivial.
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For c ∈ 2N, define fc : [0, 1]→ X as follows. Let fc(1) = x, and

fc(s) =

{
fn(2n+1s− 2n+1 + 2) c(n) = 1

x c(n) = 0

for s ∈ [1− 1
2n , 1−

1
2n+1 ].

c 7→ fc is a continuous map from 2N to C([0, 1], X).
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Say c1 = (1, 1, 0, 1, 0, 1, 0, 0, 1, ...) and
c2 = (1, 1, 1, 1, 0, 1, 0, 0, 1...). Then fc1 = f0f1ef3ef5eef8 · · · and
fc2 = f0f1f2f3ef5eef8 · · · .

[fc1 ] = [f0f1ef3ef5eef8 · · · ]
= [f0f1f3f5f8]

= [f0f1] · [f3f5f8 · · · ]

[fc2 ] = [f0f1f2f3ef5eef8 · · · ]
= [f0f1f2f3f5f8]

= [f0f1] · [f2] · [f3f5f8 · · · ]

Since π1(X) is a group and [f2] 6= e, [fc1 ] 6= [fc2 ].
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Define an equivalence relation E on 2N:

c1Ec2 ⇔ [fc1 ] = [fc2 ]

E has the property that c1 and c2 are nonequivalent whenever they
differ by exactly one digit.

E is analytic since c1Ec2 ⇔ ∃H ∈ C([0, 1]× [0, 1], X) such that...
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Proposition

Suppose E is an analytic equivalence relation on 2N s.t. ¬c1Ec2
whenever they differ by exactly one digit. Then E is meager.

Theorem

If X is a perfect Polish space and R ⊆ X2 is meager, then there
exists a Cantor set C ⊆ X s.t. ¬xRy for any different x, y ∈ C.

For a proof see Theorem 19.1 of Kechris[3].
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Proof of proposition

Otherwise, by the 100% lemma (since analytic sets are Baire
measurable) E is comeager in some nonempty open subset of
2N× 2N. Then E is comeager in some basic open set Nt×Ns.

For
brevity let us assume E is comeager in 2N × 2N.

By Kuratowski-Ulam, Ex is comeager for a comeager set G of x. If
G contains x, y that differ at exactly one digit then we are done,
since Ex ∩ Ey is comeager so nonempty, and we would have xEy,
a contradiction.
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Lemma

If G ⊆ 2N is comeager, then it contains some x, y that differ at
exactly the first digit.

Proof.

Let i : 2N → 2N be the map that flips the first digit. Then i is a
homeomorphism. Since G is comeager, so is i(G). If x ∈ G∩ i(G),
then x, i(x) ∈ G and differ exactly at the first digit.
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