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It is a theorem of [Shelah 1988] that for a path-connected, locally path-connected
compact metric space X, 1 (X) is either finitely generated or uncountable.

- Hatcher, Algebraic Topology
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Outline

What Shelah actually proved: Suppose X is a path-connected,
locally path-connected compact metric space. If X is semi-locally
simply connected, then 71 (X) is finitely generated; if not, then
roughly speaking 71 (X) contains a perfect set.
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The first part is purely topological. The second part follows from:

Proposition

Suppose E is an analytic equivalence relation on 2N s.t. =c;Fcy
whenever they differ by exactly one digit. Then there is a perfect
set of non-equivalent elements.
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locally path-connected compact metric space. If X is semi-locally
simply connected, then 71 (X) is finitely generated; if not, then
roughly speaking 71 (X) contains a perfect set.

The first part is purely topological. The second part follows from:

Proposition

Suppose E is an analytic equivalence relation on 2N s.t. =c;Fcy
whenever they differ by exactly one digit. Then there is a perfect
set of non-equivalent elements.

Shelah[1] originally proved this by forcing and absoluteness
argument. Pawlikowski[2] gave an easier proof using elementary
descriptive set theory.
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Definition 1

A topological space X is path-connected if for every two points

x,y, there exists f : [0,1] - X s.t. f(0) =z and f(1)=y. Itis
called locally path-connected if path-connected open sets form a
basis.
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called locally path-connected if path-connected open sets form a
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Definition 2

Fix a base point x € X. A loopisan f:[0,1] — X s.t.

f(0) = f(1) = z. Two loops f, g are homotopic if there exists
H:[0,1] x [0,1] = X s.t. H(s,0) = f(s), H(s,1) = g(s), and
H(0,t) = H(1,t) = « for all ¢t € [0, 1].
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Definition 2

Fix a base point x € X. A loopisan f:[0,1] — X s.t.

f(0) = f(1) = z. Two loops f, g are homotopic if there exists
H:[0,1] x [0,1] — X s.t. H(s,0) = f(s), H(s,1) = g(s), and
H(0,t) = H(1,t) = « for all t € [0,1]. This is an equivalence
relation on loops at x, and the equivalence class of f is denoted
[f]. m1(X) is the collection of all equivalence classes.
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When X is path-connected, 71 (X) does not depend on the base
point x.
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When X is path-connected, 71 (X) does not depend on the base
point x.

m1(X) can be given a group structure by defining the product f - g
of two loops at x as

[r@s),0<s<1/2
frgle)= {9(25— 1),1/2<s<1
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[r@s),0<s<1/2
frgle)= {9(25— 1),1/2<s<1

and then define [f] - [g] := [f - g]. The identity element is the
equivalence class of the constant map f(s) =z, and the inverse of
[f] is represented by f(s) = f(1—s).
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When X is path-connected, 71 (X) does not depend on the base
point x.

m1(X) can be given a group structure by defining the product f - g
of two loops at x as

[r@s),0<s<1/2
frgle)= {9(25— 1),1/2<s<1

and then define [f] - [g] := [f - g]. The identity element is the
equivalence class of the constant map f(s) = x, and the inverse of

[f] is represented by f(s) = f(1 — s).

A continuous map ® : X — Y induces a group homomorphism
O, (X) = m((Y),[f]— [®o f]
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Associativity: f-(g-h) # (f - g) - h, but they are homotopic.

f g h
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Examples

m(R") =€, m(S) =2Z, m(SVS)=Zx*Z.
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Examples

m(R") =€, m(S) =2Z, m(SVS)=Zx*Z.

Similarly 71(\/ ,c; Sa) is the free group on [I| many generators.
Attaching 2-cells to \/ < Sa can

create any desired fundamental /
group, the resulting CW complex D ‘

is often not metrizable.
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Definition 3

X is called simply connected if 71(X) is trivial. X is semi-locally
simply connected if each point has a neighborhood U s.t.

is : m(U) — m1(X) is trivial, i.e., any loop in U can be
homotoped to the constant map in X. Note that if V C U then
is :m (V) — m(X) is also trivial.
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Examples of slsc spaces: manifolds, CW complexes.
Non-example: The Hawaiian earring X = |J,, Cy,, C,, the circle at
(1,0) of radius 1.
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m1(X) is very complicated. For example an f:[0,1] — X can
traverse C,, during [1 — 55,1 — 5:1+]. It is continuous at 1 since

the circles are shrinking.
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Let f,, : [0,1] — X, then f is the limit of
fi, fr-foy fr- (2 f3), fr(fe (f3- fa))-
We may call it fifofsfa---
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Let f,, : [0,1] — X, then f is the limit of
fi, fr-foy fr- (2 f3), fr(fe (f3- fa))-
We may call it fifofsfs---Its inverse is - - f4f_3f_2f_1.
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Proof of first part
Suppose X is a path-connected, locally path-connected and slsc

compact metric space. We want to show that 7 (X) is finitely
generated.
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Proof of first part

Suppose X is a path-connected, locally path-connected and slsc
compact metric space. We want to show that 7 (X) is finitely
generated.

Each point o has a path-connected open neighborhood U, s.t.
m1(Uz) — w1 (X) is trivial. By compactness we can find a finite
cover 71 (U;) — m1(X). If moreover w1 (U; UU;) — m(X) is trivial
for any pair U; N U; # 0, then we are done: pick z; € U; and for
any U; N U; # 0 a path in U; UU; connecting z; and z;, then
m1(X) is generated by the loops formed using these paths.
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for any pair U; N U; # 0, then we are done: pick z; € U; and for
any U; NU; # () a path in U; U Uj connecting x; and x;, then
71(X) is generated by the loops formed using these paths.

Recall Lebesgue’s number lemma: If (X, d) is compact and O is an
open cover, there exists § > 0 s.t. any subset of diameter at most
0 is contained in some element of O.
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Proof of first part

Each point x has a path-connected open neighborhood U, s.t.
m1(Uz) — m1(X) is trivial. By compactness we can find a finite
cover m1(U;) — m1(X). If moreover 71 (U; UU;) — w1 (X) is trivial
for any pair U; N U; # 0, then we are done: pick z; € U; and for
any U; NU; # () a path in U; U Uj connecting x; and x;, then
71(X) is generated by the loops formed using these paths.

Recall Lebesgue’s number lemma: If (X, d) is compact and O is an
open cover, there exists § > 0 s.t. any subset of diameter at most
0 is contained in some element of O.

Pick another cover consisting of path-connected open sets of
diameter at most 0/2, and apply the argument to this cover.
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Proof of second part

X isslsce Ve AU 5 x Vf C U becomes trivial when viewed in X.
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Proof of second part

X isslsce Ve AU 5 x Vf C U becomes trivial when viewed in X.
X not slsc& dx VU > ¢ 4f C U that is nontrivial in X.

Let U,, be the ball at  with radius 1/n and f,, a loop at x that is
contained in U,, and nontrivial.
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For c € 2N, define f.: [0,1] — X as follows. Let f.(1) = 2, and

fo(2rtls —2ntl L 9) ¢(n) =1
£(5) = { ( ) )
x c¢(n) =0
for s € [1—2%,1—271%].
¢+ fe is a continuous map from 2% to C([0, 1], X).
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Say ¢; = (1,1,0,1,0,1,0,0,1,...) and
co=(1,1,1,1,0,1,0,0,1...). Then f., = fofiefsefseefs--- and
fes = fofifafsefseefs -

15/20



Say ¢; = (1,1,0,1,0,1,0,0,1,...) and
co=(1,1,1,1,0,1,0,0,1...). Then f., = fofiefsefseefs--- and
fes = fofifafsefseefs -
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Say ¢; = (1,1,0,1,0,1,0,0,1,...) and
co=(1,1,1,1,0,1,0,0,1...). Then f., = fofiefsefseefs--- and
fes = fofifafsefseefs -

[fer] = [fofiefsefseefs - -]
= [fof1f3f5 /8]
= [fof1] - [fafsfa- -]

[feo] = [fofrfafzefseefs -]
= [fofifaf3[5/3]
= [fof1] - [fo] - [fsfsfs -]

Since 71(X) is a group and [fa] # e, [fe,] # [feo)-
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Define an equivalence relation E on 2N:

cFcy & [fm] = [f02]

FE has the property that ¢; and ¢y are nonequivalent whenever they
differ by exactly one digit.
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Define an equivalence relation E on 2N:

cFcy & [fm] = [f02]

FE has the property that ¢; and ¢y are nonequivalent whenever they
differ by exactly one digit.

E is analytic since ¢c1 Fca < 3H € C([0,1] x [0,1], X) such that...
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Suppose E is an analytic equivalence relation on 2N s.t. =c1Ecs
whenever they differ by exactly one digit. Then E is meager.
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Suppose E is an analytic equivalence relation on 2N s.t. =c1Ecs
whenever they differ by exactly one digit. Then E is meager.

Theorem

If X is a perfect Polish space and R C X? is meager, then there
exists a Cantor set C C X s.t. xRy for any different x,y € C.

For a proof see Theorem 19.1 of Kechris[3].
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Proof of proposition

Otherwise, by the 100% lemma (since analytic sets are Baire
measurable) F is comeager in some nonempty open subset of
2N % 2N Then E is comeager in some basic open set N; x Nj.
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Proof of proposition

Otherwise, by the 100% lemma (since analytic sets are Baire
measurable) F is comeager in some nonempty open subset of

2N % 2N Then E is comeager in some basic open set N; x N,. For
brevity let us assume E is comeager in 2 x 2N,

By Kuratowski-Ulam, F, is comeager for a comeager set G of x. If
G contains z,y that differ at exactly one digit then we are done,
since B, N K, is comeager so nonempty, and we would have xEy,
a contradiction.
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Lemma

If G C 2V is comeager, then it contains some x,y that differ at
exactly the first digit.

Proof.

Let i : 28 — 2N be the map that flips the first digit. Then i is a
homeomorphism. Since G is comeager, so is i(G). If v € GNi(G),
then z,i(z) € G and differ exactly at the first digit. O
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