Can the Fundamental Group of a Space be the Rationals?

Fanxin Wu

November 4, 2021

It is a theorem of [Shelah 1988] that for a path-connected, locally path-connected compact metric space X, $\pi_1(X)$ is either finitely generated or uncountable.

- Hatcher, Algebraic Topology

Outline

What Shelah actually proved: Suppose X is a path-connected, locally path-connected compact metric space. If X is semi-locally simply connected, then $\pi_1(X)$ is finitely generated; if not, then roughly speaking $\pi_1(X)$ contains a perfect set.

Outline

What Shelah actually proved: Suppose X is a path-connected, locally path-connected compact metric space. If X is semi-locally simply connected, then $\pi_1(X)$ is finitely generated; if not, then roughly speaking $\pi_1(X)$ contains a perfect set.

The first part is purely topological. The second part follows from:

Proposition

Suppose *E* is an analytic equivalence relation on $2^{\mathbb{N}}$ s.t. $\neg c_1 E c_2$ whenever they differ by exactly one digit. Then there is a perfect set of non-equivalent elements.

Outline

What Shelah actually proved: Suppose X is a path-connected, locally path-connected compact metric space. If X is semi-locally simply connected, then $\pi_1(X)$ is finitely generated; if not, then roughly speaking $\pi_1(X)$ contains a perfect set.

The first part is purely topological. The second part follows from:

Proposition

Suppose *E* is an analytic equivalence relation on $2^{\mathbb{N}}$ s.t. $\neg c_1 E c_2$ whenever they differ by exactly one digit. Then there is a perfect set of non-equivalent elements.

Shelah[1] originally proved this by forcing and absoluteness argument. Pawlikowski[2] gave an easier proof using elementary descriptive set theory.

A topological space X is *path-connected* if for every two points x, y, there exists $f : [0,1] \to X$ s.t. f(0) = x and f(1) = y. It is called *locally path-connected* if path-connected open sets form a basis.

A topological space X is *path-connected* if for every two points x, y, there exists $f : [0, 1] \to X$ s.t. f(0) = x and f(1) = y. It is called *locally path-connected* if path-connected open sets form a basis.

Definition 2

Fix a base point $x \in X$. A *loop* is an $f : [0,1] \to X$ s.t. f(0) = f(1) = x. Two loops f, g are *homotopic* if there exists $H : [0,1] \times [0,1] \to X$ s.t. H(s,0) = f(s), H(s,1) = g(s), and H(0,t) = H(1,t) = x for all $t \in [0,1]$.

A topological space X is *path-connected* if for every two points x, y, there exists $f : [0, 1] \to X$ s.t. f(0) = x and f(1) = y. It is called *locally path-connected* if path-connected open sets form a basis.

Definition 2

Fix a base point $x \in X$. A *loop* is an $f : [0,1] \to X$ s.t. f(0) = f(1) = x. Two loops f, g are *homotopic* if there exists $H : [0,1] \times [0,1] \to X$ s.t. H(s,0) = f(s), H(s,1) = g(s), and H(0,t) = H(1,t) = x for all $t \in [0,1]$. This is an equivalence relation on loops at x, and the equivalence class of f is denoted [f]. $\pi_1(X)$ is the collection of all equivalence classes.

 $\pi_1(X)$ can be given a group structure by defining the product $f\cdot g$ of two loops at x as

$$f \cdot g(s) = \begin{cases} f(2s), 0 \le s \le 1/2\\ g(2s-1), 1/2 \le s \le 1 \end{cases}$$

 $\pi_1(X)$ can be given a group structure by defining the product $f\cdot g$ of two loops at x as

$$f \cdot g(s) = \begin{cases} f(2s), 0 \le s \le 1/2\\ g(2s-1), 1/2 \le s \le 1 \end{cases}$$

and then define $[f] \cdot [g] := [f \cdot g]$. The identity element is the equivalence class of the constant map f(s) = x, and the inverse of [f] is represented by $\bar{f}(s) = f(1-s)$.

 $\pi_1(X)$ can be given a group structure by defining the product $f\cdot g$ of two loops at x as

$$f \cdot g(s) = \begin{cases} f(2s), 0 \le s \le 1/2\\ g(2s-1), 1/2 \le s \le 1 \end{cases}$$

and then define $[f] \cdot [g] := [f \cdot g]$. The identity element is the equivalence class of the constant map f(s) = x, and the inverse of [f] is represented by $\bar{f}(s) = f(1-s)$.

A continuous map $\Phi: X \to Y$ induces a group homomorphism $\Phi_*: \pi_1(X) \to \pi_1(Y), [f] \mapsto [\Phi \circ f].$

Associativity: $f \cdot (g \cdot h) \neq (f \cdot g) \cdot h$, but they are homotopic.

Examples

$$\pi_1(\mathbb{R}^n) = e, \ \pi_1(S) = \mathbb{Z}, \ \pi_1(S \lor S) = \mathbb{Z} * \mathbb{Z}.$$

Examples

$$\pi_1(\mathbb{R}^n) = e, \ \pi_1(S) = \mathbb{Z}, \ \pi_1(S \lor S) = \mathbb{Z} * \mathbb{Z}.$$

Similarly $\pi_1(\bigvee_{\alpha \in I} S_\alpha)$ is the free group on |I| many generators.

Examples

$$\pi_1(\mathbb{R}^n) = e, \ \pi_1(S) = \mathbb{Z}, \ \pi_1(S \lor S) = \mathbb{Z} * \mathbb{Z}.$$

Similarly $\pi_1(\bigvee_{\alpha \in I} S_\alpha)$ is the free group on |I| many generators.

Attaching 2-cells to $\bigvee_{\alpha \in I} S_{\alpha}$ can create any desired fundamental group, the resulting CW complex is often not metrizable.

X is called simply connected if $\pi_1(X)$ is trivial. X is semi-locally simply connected if each point has a neighborhood U s.t. $i_*: \pi_1(U) \to \pi_1(X)$ is trivial, i.e., any loop in U can be homotoped to the constant map in X. Note that if $V \subseteq U$ then $i_*: \pi_1(V) \to \pi_1(X)$ is also trivial.

X is called *simply connected* if $\pi_1(X)$ is trivial. X is *semi-locally simply connected* if each point has a neighborhood U s.t. $i_*: \pi_1(U) \to \pi_1(X)$ is trivial, i.e., any loop in U can be homotoped to the constant map in X. Note that if $V \subseteq U$ then $i_*: \pi_1(V) \to \pi_1(X)$ is also trivial.

Examples of slsc spaces: manifolds, CW complexes.

Non-example: The Hawaiian earring $X = \bigcup_n C_n$, C_n the circle at $(\frac{1}{n}, 0)$ of radius $\frac{1}{n}$.

X is called *simply connected* if $\pi_1(X)$ is trivial. X is *semi-locally simply connected* if each point has a neighborhood U s.t. $i_*: \pi_1(U) \to \pi_1(X)$ is trivial, i.e., any loop in U can be homotoped to the constant map in X. Note that if $V \subseteq U$ then $i_*: \pi_1(V) \to \pi_1(X)$ is also trivial.

Examples of slsc spaces: manifolds, CW complexes.

Non-example: The Hawaiian earring $X = \bigcup_n C_n$, C_n the circle at $(\frac{1}{n}, 0)$ of radius $\frac{1}{n}$.

 $\pi_1(X)$ is very complicated. For example an $f:[0,1] \to X$ can traverse C_n during $[1 - \frac{1}{2^n}, 1 - \frac{1}{2^{n+1}}]$. It is continuous at 1 since the circles are shrinking.

Let $f_n: [0,1] \to X$, then f is the limit of $f_1, f_1 \cdot f_2, f_1 \cdot (f_2 \cdot f_3), f_1 \cdot (f_2 \cdot (f_3 \cdot f_4))...$ We may call it $f_1 f_2 f_3 f_4 \cdots$

Let $f_n: [0,1] \to X$, then f is the limit of $f_1, f_1 \cdot f_2, f_1 \cdot (f_2 \cdot f_3), f_1 \cdot (f_2 \cdot (f_3 \cdot f_4))...$ We may call it $f_1 f_2 f_3 f_4 \cdots$ Its inverse is $\cdots \overline{f_4} \overline{f_3} \overline{f_2} \overline{f_1}$.

Suppose X is a path-connected, locally path-connected and slsc compact metric space. We want to show that $\pi_1(X)$ is finitely generated.

Suppose X is a path-connected, locally path-connected and slsc compact metric space. We want to show that $\pi_1(X)$ is finitely generated.

Each point x has a path-connected open neighborhood U_x s.t. $\pi_1(U_x) \to \pi_1(X)$ is trivial. By compactness we can find a finite cover $\pi_1(U_i) \to \pi_1(X)$. If moreover $\pi_1(U_i \cup U_j) \to \pi_1(X)$ is trivial for any pair $U_i \cap U_j \neq \emptyset$, then we are done: pick $x_i \in U_i$ and for any $U_i \cap U_j \neq \emptyset$ a path in $U_i \cup U_j$ connecting x_i and x_j , then $\pi_1(X)$ is generated by the loops formed using these paths.

Each point x has a path-connected open neighborhood U_x s.t. $\pi_1(U_x) \to \pi_1(X)$ is trivial. By compactness we can find a finite cover $\pi_1(U_i) \to \pi_1(X)$. If moreover $\pi_1(U_i \cup U_j) \to \pi_1(X)$ is trivial for any pair $U_i \cap U_j \neq \emptyset$, then we are done: pick $x_i \in U_i$ and for any $U_i \cap U_j \neq \emptyset$ a path in $U_i \cup U_j$ connecting x_i and x_j , then $\pi_1(X)$ is generated by the loops formed using these paths.

Recall Lebesgue's number lemma: If (X, d) is compact and \mathcal{O} is an open cover, there exists $\delta > 0$ s.t. any subset of diameter at most δ is contained in some element of \mathcal{O} .

Each point x has a path-connected open neighborhood U_x s.t. $\pi_1(U_x) \to \pi_1(X)$ is trivial. By compactness we can find a finite cover $\pi_1(U_i) \to \pi_1(X)$. If moreover $\pi_1(U_i \cup U_j) \to \pi_1(X)$ is trivial for any pair $U_i \cap U_j \neq \emptyset$, then we are done: pick $x_i \in U_i$ and for any $U_i \cap U_j \neq \emptyset$ a path in $U_i \cup U_j$ connecting x_i and x_j , then $\pi_1(X)$ is generated by the loops formed using these paths.

Recall Lebesgue's number lemma: If (X, d) is compact and \mathcal{O} is an open cover, there exists $\delta > 0$ s.t. any subset of diameter at most δ is contained in some element of \mathcal{O} .

Pick another cover consisting of path-connected open sets of diameter at most $\delta/2$, and apply the argument to this cover.

Proof of second part

$X \text{ is slsc} \Leftrightarrow \forall x \exists U \ni x \ \forall f \subseteq U \text{ becomes trivial when viewed in } X.$

Proof of second part

X is slsc $\Leftrightarrow \forall x \exists U \ni x \forall f \subseteq U$ becomes trivial when viewed in X. X not slsc $\Leftrightarrow \exists x \forall U \ni x \exists f \subseteq U$ that is nontrivial in X.

Proof of second part

X is slsc $\Leftrightarrow \forall x \exists U \ni x \forall f \subseteq U$ becomes trivial when viewed in X.

 $X \text{ not slsc} \Leftrightarrow \exists x \ \forall U \ni x \ \exists f \subseteq U \text{ that is nontrivial in } X.$

Let U_n be the ball at x with radius 1/n and f_n a loop at x that is contained in U_n and nontrivial.

For $c\in 2^{\mathbb{N}},$ define $f_c:[0,1]\rightarrow X$ as follows. Let $f_c(1)=x,$ and

$$f_c(s) = \begin{cases} f_n(2^{n+1}s - 2^{n+1} + 2) & c(n) = 1\\ x & c(n) = 0 \end{cases}$$

for $s \in [1 - \frac{1}{2^n}, 1 - \frac{1}{2^{n+1}}].$

 $c\mapsto f_c$ is a continuous map from $2^{\mathbb{N}}$ to C([0,1],X).

Say
$$c_1 = (1, 1, 0, 1, 0, 1, 0, 0, 1, ...)$$
 and
 $c_2 = (1, 1, 1, 1, 0, 1, 0, 0, 1...)$. Then $f_{c_1} = f_0 f_1 e f_3 e f_5 e e f_8 \cdots$ and
 $f_{c_2} = f_0 f_1 f_2 f_3 e f_5 e e f_8 \cdots$.

Say
$$c_1 = (1, 1, 0, 1, 0, 1, 0, 0, 1, ...)$$
 and
 $c_2 = (1, 1, 1, 1, 0, 1, 0, 0, 1...)$. Then $f_{c_1} = f_0 f_1 e f_3 e f_5 e e f_8 \cdots$ and
 $f_{c_2} = f_0 f_1 f_2 f_3 e f_5 e e f_8 \cdots$.

$$\begin{split} [f_{c_1}] &= [f_0 f_1 e f_3 e f_5 e e f_8 \cdots] \\ &= [f_0 f_1 f_3 f_5 f_8] \\ &= [f_0 f_1] \cdot [f_3 f_5 f_8 \cdots] \end{split}$$

Say
$$c_1 = (1, 1, 0, 1, 0, 1, 0, 0, 1, ...)$$
 and
 $c_2 = (1, 1, 1, 1, 0, 1, 0, 0, 1...)$. Then $f_{c_1} = f_0 f_1 e f_3 e f_5 e e f_8 \cdots$ and
 $f_{c_2} = f_0 f_1 f_2 f_3 e f_5 e e f_8 \cdots$.

$$[f_{c_1}] = [f_0 f_1 e f_3 e f_5 e e f_8 \cdots]$$

= [f_0 f_1 f_3 f_5 f_8]
= [f_0 f_1] \cdot [f_3 f_5 f_8 \cdots]

$$\begin{split} [f_{c_2}] &= [f_0 f_1 f_2 f_3 e f_5 e e f_8 \cdots] \\ &= [f_0 f_1 f_2 f_3 f_5 f_8] \\ &= [f_0 f_1] \cdot [f_2] \cdot [f_3 f_5 f_8 \cdots] \end{split}$$

Say
$$c_1 = (1, 1, 0, 1, 0, 1, 0, 0, 1, ...)$$
 and
 $c_2 = (1, 1, 1, 1, 0, 1, 0, 0, 1...)$. Then $f_{c_1} = f_0 f_1 e f_3 e f_5 e e f_8 \cdots$ and
 $f_{c_2} = f_0 f_1 f_2 f_3 e f_5 e e f_8 \cdots$.

$$\begin{split} [f_{c_1}] &= [f_0 f_1 e f_3 e f_5 e e f_8 \cdots] \\ &= [f_0 f_1 f_3 f_5 f_8] \\ &= [f_0 f_1] \cdot [f_3 f_5 f_8 \cdots] \end{split}$$

$$\begin{split} [f_{c_2}] &= [f_0 f_1 f_2 f_3 e f_5 e e f_8 \cdots] \\ &= [f_0 f_1 f_2 f_3 f_5 f_8] \\ &= [f_0 f_1] \cdot [f_2] \cdot [f_3 f_5 f_8 \cdots] \end{split}$$

Since $\pi_1(X)$ is a group and $[f_2] \neq e$, $[f_{c_1}] \neq [f_{c_2}]$.

Define an equivalence relation E on $2^{\mathbb{N}}$:

$$c_1 E c_2 \Leftrightarrow [f_{c_1}] = [f_{c_2}]$$

 ${\cal E}$ has the property that c_1 and c_2 are nonequivalent whenever they differ by exactly one digit.

Define an equivalence relation E on $2^{\mathbb{N}}$:

$$c_1 E c_2 \Leftrightarrow [f_{c_1}] = [f_{c_2}]$$

 ${\cal E}$ has the property that c_1 and c_2 are nonequivalent whenever they differ by exactly one digit.

E is analytic since $c_1Ec_2 \Leftrightarrow \exists H \in C([0,1] \times [0,1], X)$ such that...

Proposition

Suppose E is an analytic equivalence relation on $2^{\mathbb{N}}$ s.t. $\neg c_1 E c_2$ whenever they differ by exactly one digit. Then E is meager.

Proposition

Suppose E is an analytic equivalence relation on $2^{\mathbb{N}}$ s.t. $\neg c_1 E c_2$ whenever they differ by exactly one digit. Then E is meager.

Theorem

If X is a perfect Polish space and $R \subseteq X^2$ is meager, then there exists a Cantor set $C \subseteq X$ s.t. $\neg xRy$ for any different $x, y \in C$.

For a proof see Theorem 19.1 of Kechris[3].

Otherwise, by the 100% lemma (since analytic sets are Baire measurable) E is comeager in some nonempty open subset of $2^{\mathbb{N}} \times 2^{\mathbb{N}}$. Then E is comeager in some basic open set $N_t \times N_s$.

Otherwise, by the 100% lemma (since analytic sets are Baire measurable) E is comeager in some nonempty open subset of $2^{\mathbb{N}} \times 2^{\mathbb{N}}$. Then E is comeager in some basic open set $N_t \times N_s$. For brevity let us assume E is comeager in $2^{\mathbb{N}} \times 2^{\mathbb{N}}$.

Otherwise, by the 100% lemma (since analytic sets are Baire measurable) E is comeager in some nonempty open subset of $2^{\mathbb{N}} \times 2^{\mathbb{N}}$. Then E is comeager in some basic open set $N_t \times N_s$. For brevity let us assume E is comeager in $2^{\mathbb{N}} \times 2^{\mathbb{N}}$.

By Kuratowski-Ulam, E_x is comeager for a comeager set G of x. If G contains x, y that differ at exactly one digit then we are done, since $E_x \cap E_y$ is comeager so nonempty, and we would have xEy, a contradiction.

Lemma

If $G \subseteq 2^{\mathbb{N}}$ is comeager, then it contains some x, y that differ at exactly the first digit.

Proof.

Let $i: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ be the map that flips the first digit. Then i is a homeomorphism. Since G is comeager, so is i(G). If $x \in G \cap i(G)$, then $x, i(x) \in G$ and differ exactly at the first digit. \Box

Reference

- - S. Shelah, "Can the fundamental (homotopy) group of a space be the rationals?," *Proceedings of the American Mathematical Society*, vol. 103, no. 2, pp. 627–632, 1988.
- J. Pawlikowski, "The fundamental group of a compact metric space," *Proceedings of the American Mathematical Society*, vol. 126, no. 10, pp. 3083–3087, 1998.
- A. Kechris, Classical Descriptive Set Theory.

Graduate Texts in Mathematics, Springer New York, 2012.